Improved Model to Predict the Free Energy Contribution of Trinucleotide Bulges to RNA Duplex Stability

نویسندگان

  • Meghan H. Murray
  • Jessicah A. Hard
  • Brent M. Znosko
چکیده

Trinucleotide bulges in RNA commonly occur in nature. Yet, little data exists concerning the thermodynamic parameters of this motif. Algorithms that predict RNA secondary structure from sequence currently attribute a constant free energy value of 3.2 kcal/mol to all trinucleotide bulges, regardless of bulge sequence. To test the accuracy of this model, RNA duplexes that contain frequent naturally occurring trinucleotide bulges were optically melted, and their thermodynamic parameters-enthalpy, entropy, free energy, and melting temperature-were determined. The thermodynamic data were used to derive a new model to predict the free energy contribution of trinucleotide bulges to RNA duplex stability: ΔG°37, trint bulge = ΔG°37, bulge + ΔG°37, AU + ΔG°37, GU. The parameter ΔG°37, bulge is variable depending upon the purine and pyrimidine composition of the bulge, ΔG°37, AU is a 0.49 kcal/mol penalty for an A-U closing pair, and ΔG° 37, GU is a -0.56 kcal/mol bonus for a G-U closing pair. With both closing pair and bulge sequence taken into account, this new model predicts free energy values within 0.30 kcal/mol of the experimental value. The new model can be used by algorithms that predict RNA free energies as well as algorithms that use free energy minimization to predict RNA secondary structure from sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved free-energy parameters for predictions of RNA duplex stability.

Thermodynamic parameters for prediction of RNA duplex stability are reported. One parameter for duplex initiation and 10 parameters for helix propagation are derived from enthalpy and free-energy changes for helix formation by 45 RNA oligonucleotide duplexes. The oligomer sequences were chosen to maximize reliability of secondary structure predictions. Each of the 10 nearest-neighbor sequences ...

متن کامل

Thermodynamic parameters for an expanded nearest-neighbor model for the formation of RNA duplexes with single nucleotide bulges.

Thirty-four RNA duplexes containing single nucleotide bulges were optically melted, and the thermodynamic parameters deltaH degrees, deltaS degrees, deltaG degrees (37), and T(M) for each sequence were determined. Data from this study were combined with data from previous thermodynamic data [Longfellow, C. E., Kierzek, R., and Turner, D. H. (1990) Biochemistry 29, 278-85] to develop a model tha...

متن کامل

Stability of 3' double nucleotide overhangs that model the 3' ends of siRNA.

Thermodynamic parameters are reported for duplex formation in 1 M NaCl for 16 RNA sequences, each containing a core tetramer duplex, GGCC, and a 3' overhang consisting of two bases. The results indicate additional double-helical stability is conferred by the double 3' terminal overhang relative to the single 3' terminal overhang. A nearest-neighbor analysis of the data indicates that the free e...

متن کامل

Non-nearest-neighbor dependence of the stability for RNA group II single-nucleotide bulge loops.

Thirty-one RNA duplexes containing single-nucleotide bulge loops were optically melted in 1 M NaCl, and the thermodynamic parameters ΔH°, ΔS°, ΔG°(37), and T(M) for each sequence were determined. The bulge loops were of the group II variety, where the bulged nucleotide is identical to one of its nearest neighbors, leading to ambiguity as to the exact position of the bulge. The data were used to...

متن کامل

Structure and stability of RNA/RNA kissing complex: with application to HIV dimerization initiation signal.

We develop a statistical mechanical model to predict the structure and folding stability of the RNA/RNA kissing-loop complex. One of the key ingredients of the theory is the conformational entropy for the RNA/RNA kissing complex. We employ the recently developed virtual bond-based RNA folding model (Vfold model) to evaluate the entropy parameters for the different types of kissing loops. A benc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014